Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments.
نویسندگان
چکیده
Given the three-dimensional (3D) structure of a protein, the binding pose of a ligand can be determined using distance restraints derived from assigned intra-ligand and protein-ligand nuclear Overhauser effects (NOEs). A primary limitation of this approach is the need for resonance assignments of the ligand-bound protein. We have developed an approach that utilizes data from 3D 13C-edited, 13C/15N-filtered HSQC-NOESY spectra for evaluating ligand binding poses without requiring protein NMR resonance assignments. Only the 1H NMR assignments of the bound ligand are essential. Trial ligand binding poses are generated by any suitable method (e.g., computational docking). For each trial binding pose, the 3D 13C-edited, 13C/15N-filtered HSQC-NOESY spectrum is predicted, and the predicted and observed patterns of protein-ligand NOEs are matched and scored using a fast, deterministic bipartite graph matching algorithm. The best scoring (lowest "cost") poses are identified. Our method can incorporate any explicit restraints or protein assignment data that are available, and many extensions of the basic procedure are feasible. Only a single sample is required, and the method can be applied to both slowly and rapidly exchanging ligands. The method was applied to three test cases: one complex involving muscle fatty acid-binding protein (mFABP) and two complexes involving the leukocyte function-associated antigen 1 (LFA-1) I-domain. Without using experimental protein NMR assignments, the method identified the known binding poses with good accuracy. The addition of experimental protein NMR assignments improves the results. Our "NOE matching" approach is expected to be widely applicable; i.e., it does not appear to depend on a fortuitous distribution of binding pocket residues.
منابع مشابه
Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data.
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of thr...
متن کاملA Hausdorff-based Noe Assignment Algorithm Using Protein Backbone Determined from Residual Dipolar Couplings and Rotamer Patterns.
High-throughput structure determination based on solution Nuclear Magnetic Resonance (NMR) spectroscopy plays an important role in structural genomics. One of the main bottlenecks in NMR structure determination is the interpretation of NMR data to obtain a sufficient number of accurate distance restraints by assigning nuclear Overhauser effect (NOE) spectral peaks to pairs of protons. The diffi...
متن کاملNOEnet–Use of NOE networks for NMR resonance assignment of proteins with known 3D structure
MOTIVATION A prerequisite for any protein study by NMR is the assignment of the resonances from the (15)N-(1)H HSQC spectrum to their corresponding atoms of the protein backbone. Usually, this assignment is obtained by analyzing triple resonance NMR experiments. An alternative assignment strategy exploits the information given by an already available 3D structure of the same or a homologous pro...
متن کاملA Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments
High-throughput NMR structural biology can play an important role in structural genomics. We report an automated procedure for high-throughput NMR resonance assignment for a protein of known structure, or of an homologous structure. These assignments are a prerequisite for probing protein-protein interactions, protein-ligand binding, and dynamics by NMR. Assignments are also the starting point ...
متن کاملEstimating protein-ligand binding affinity using high-throughput screening by NMR.
Many of today's drug discovery programs use high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or line ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 22 شماره
صفحات -
تاریخ انتشار 2006